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The behaviour of the contact stresses at a singular point, which is the intersection of the vertex of a wedge-shaped punch, with 
an apex angle that is not too small, with the edge of an elastic three-dimensional wedge, is investigated by a numerical-analytical 
method [1] for different types of boundary conditions on its other face. Agreement between the numerical results and the results 
obtained previously by an asymptotic method for small apex angles [2] with respect to real singularity exponents is established. 
The reason why the numerical-analytical method [1] is unable to obtain the well-known singularity with exponent -3/2 per + 
ito[2, 3] is investigated. The conclusion drawn in [2] on the occurrence of terms of the order of r-3;2-%-/%, 0 < to] < 1/2 for small 
angles of the elastic wedge, one face of which is rigidly clamped, is confirmed. This leads to stronger oscillations of the contact 
pressure in the neighbourhood of the vertex of the punch. The mechanism by which new oscillating terms arise for an elastic 
wedge with one stress-face is indicated. The mutual effect of two similar wedge-shaped punches on a half-space is investigated 
as a special ease. © 1999 Elsevier Science Ltd. All rights reserved. 

Suppose a punch, wedge-shaped in planform, is pressed into one face of an elastic three-dimensional wedge with 
apex angle ct (0 < a < 2n), so that the contact area f2 is an infinite wedge (see Fig. 1) with apex angle 213 (0 < 13 
< r~/2), described in polar coordinates p, V (r = p cos V, z = p sin V, the z axis coincides with the edge of the 
elastic wedge) by the inequalities 0 ~< p < ~, I VI < 13. The base of the punch is described by the function f(p, V), 
(p, ~)  e f2. One  of the following boundary conditions is satisfied on the other face of the elastic wedge: (a) there 
are no stresses, (b) sliding contact, and (c) rigid bonding. The normal contact stress function q(p, V), (p, ~)  ~ f2, 
referred to 0 = G / ( 1  - v), is unknown, where G is the shear modulus and v is Poisson's ratio. 

To eliminate the solutions of the contact problem with infinite energy we will henceforth assume that a Mellin 
t ransformation with respect to the variable p can be applied to the functions q(p, ~)  andf (p ,  V), and 

dw' ~ q(p,~I/)pdp< *o, J dw'~ f(p,w)pdp < *° (I) 
-I~ 0 -I~ o 

The integral equation of contact problems a, b and c, after applying the integral Mellin transformation is obtained 
in the form [2] 

I 
S qs(~)Ks ([~,~ax)d~=f,(x)' Ixl<~l (2) 
-I 

1 
K ~ = K s ( t ' P ) = ^  Ps ~ ( - c o s ( t - p ) ) + K . * ( t , p )  (3) 
• ZCOS~ - 

Ks (t,p ) = I.~...'~' sh 7tu(Wj (u)- cthitu)[ R+ (-s,u,t)R+ (s,u,p) + R_ (-s,u,t)R__(s,u,p)ldu + 
2it o 

[ {': 1 It 0 2 Wj(u) R+(s,u,p)B~ ch R+(-s,y,t) + 

+R-(s,u,p'Br{ch'~'R_(-s,y,t)}]du (IResl< I~) (4) 

where we have introduced new functions and independent variables by the formulae 

x = v l f J ,  * f , ( x ) =  fs (~)I~ qs (x) = qs (W), . * 

1 I q.~(¥)p-~-~ds = q ( p , ¥ ) ,  2hi  r I " L I  f~*(W)P -s-~ds = f(P,V) (5) 
2~i r 
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Fig.  1. 

and we have also used the notation employed in (1.3) and (1.6) in [2]. The following misprints in formulae (1.3) 
in [2] need to be corrected: in the denominator Wl(U), there should be a plus sign instead of the last sign, both 
pairs must be selected in the expression for W±(u), in the formula forg2(t) the denominator should have the form 
ch 2oi - cos 4¢t, in the first row of the expression for g3(t) there should be tf3(t ) instead of~3(t), while in the third 
row there should be sin et instead of sin 0. 

In (4) the values m = 1, 2, 3 correspond to problems a, b, c, respectively. In (5) F is the straight line in the plane 
of the complex variable s, parallel to the imaginary axis which intersects the real axis slightly to the left of the point 
s = 1/2. 

As was proved in [1], the exponent of the singularity of the contact-pressure function q(p, V) when p ~ 0 is 
related to the points of the spectrum of the integral operator on the left-hand side of Eq. (2). The poles sk of the 
function qs(~) will obviously be those values of the parameter s for which non-trivial solutions of the corresponding 
homogeneous equation can exist, i.e. points of the spectrum of the integral operator (2). Here Sk is independent 
of~. 

To find s /we  carry out a discretization of Eq. (2) using the Bubnov-Galerkin method: the solution is sought in 
the form of an expansion in a system of basis functions u,,(~) 

qs(~ )= '~, tm(S)Um(~) (6) 
hi=0 

while to determine tm -- tin(s) the residual is decomposed with respect to the second basis {ul}t=O,® " as a result we 
obtain the following infinite system with respect to the unknowns 

atmtn,=/~, 1=0,1 .... 
ra=0 

I I 

aim =(KsVm,Wl)lL2 = I I K s ( ~ , ~ X ) V m ( ~ ) w t ( x ) d ~  
-I -I 

I 
ft = S f~(x)wt(x)dx (7) 

-1  

Here {Wk}k~0 is a system of projectors onto the basis {ut}t~=0, i.e. (ut, wk)lz2 = ~Sz, where 8kt is the Kronecker delta. 
+ 2 -1-/2 The function qs(~) when ~ = _ 1 has a weak singularity of the form (1 - ~ ) . To regularize the initial ill-posed 

problem--integral equation (2)--we need to take this singularity into account in the coordinate functions. Hence, 
it is natural to select as the basis functions the system of functions [1] 

Tm(~) " ut(x)=ClTl(X), c 0 = l  , c l = 2  ( l ; n l )  Vm(~,) = I - ~ '  (8) 

where Tz(X) are Chebyshev polynomials of the first kind. No singularity occurs in the second system, since the 
right-hand side and the residual are smooth functions. In view of the condition for the Chebyshev polynomials to 
be orthogonal we obtain that 

Tk(X) 
w k (x) = n l ~ _ x 2  (9) 

Using the expansion of a Legendre function of the form [1] 

2COS~,f  ' ~ k=-**  
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Gk(s)  = 

and the value of the integral [4] 

r(O.5s+O.51kl+O.25)F(-O.59s+O.51kl+0.25) 
2r(O.5s + O.51k l +O. 75)r(--O.Ss + O.51k l +0. 75) (lO) 

i T, . (x)  I e:t:iax dx = ~e+inml2Jm(a ) 
-I ~[1 - x 2 (11) 

we obtain the following expression for the elements of the matrix of system (7) at,, = arm(s) (1, m = 0, 1 . . . .  ) 

_ 1 I I 
aim(S)= ~ Gn(S,Jm(~n)Jl([in)cos(~--~x)+-~!, ~ K s ( ~ , [ i y , ~ d x d y  

n=O - - l  q l - x "  ~/1-y"  
(12) 

The prime on the summation sign denotes that the first term (n = 0) of the series in (12) is taken with the coefficient 
1/2. If, when s = Sk, the determinant D(s) of the infinite-dimensional matrix with elements (12) vanishes, then q(p, 
~g) - p-v, V = 3/2 + Sk when p -~ 0. When B > 0.1 n and for values ofct that are not too small (for which calculations 
will be carried out below, it is sufficient to reduce the matrix with elements (12) to dimension 4-5, so as to ensure 
three correct significant figures for the zeros of its determinant on the real axis [1]. 

Note that when s e R the functions R±(s, u, t) (3) take real values; to calculate the values of the Legendre functions, 
occurring in the expression for R±(s, u, t), it is convenient to use their representation in terms of the hypergeometric 
function [4]. 

Instead of summing the Neumann series BU2, 3, which occur in formula (1.3) in [2], we solve the Fredholm integral 
equations of the second kind numerically, the analytical solutions of which are represented by these series. These 
Fredholm equations can be found in [5]. To solve them we used the method of mechanical quadratures with the 
Gauss quadrature formula for 32 nodes [6]. 

In Table I we give the values of the largest singularity exponent ,/for problems a, b and c, corresponding to real 
zeros D(s), s e (-3/2; -1/2) as a function of the angles ct and [~ (in degrees); all the calculations are carried out for 
v = 0.3. 

For problem a with a = 225 °, 270 ° and 315 ° and the same values of 2l~, given in Table 1, the values of ~/differ 
by less than 6% from the corresponding values given in the last column of the table, which (for a wedge on a half- 
space) agree well with the curve shown in Fig. 4.2 in [1] for e = 0. 

By the theorem of implicit functions sk(ct, [3)--the root of the equation D(s) = 0, depends analytically on ct and 
13. Consequently, as tz and 13 change continuously these roots trace out continuous curves in the s plane. 

As calculations show, for problem a with 2[3 = n and ct --- 100 ° in the range e (-3/2; -1/2) close to the point 
s = -1/2 there are two additional zeros ofD(s)  ('/1 = 0.98 and 72 = 0.96), which, if we fix ct and reduce the angle 
213, merge into a quadratic root giving a singularity of the order of 9-v(C1 +C2 In 9), and then converge to the real 
axis and become complex conjugates, leading to oscillations of the contact-pressure function as O -~ 0 and separation 
of the tip of the punch from the elastic base. 

For problem c, for sufficiently acute angles ct, zeros of D(s) occur at s e (0; 1/2); for example, when ct = 0.1~, 
213 = 45 °, sl = 0.45, s2 = 0.47. On combining and emerging into the complex domain, these zeros lead to the strongest 
singularity of order y = col + io~ 2 + 3/2, o~ ~ (0; 1/2) which confirms the results obtained in [2] by an asymptotic 
method. 

Problem b is obviously equivalent to the problem of the symmetrical pressing of two similar wedge-shaped punches 
of different faces of a wedge of twice the apex angle. In particular, comparison of the last column of the table for 

Table 1 

Problem 2[$ ct 

45 I ~ [  135 I 18o I 2251270 315 

45 0.999 0.985 0.862 0.788 - - - 

a 90 0.999 0.987 0.740 0.703 - - - 

1 3 5  0.999 0.990 0.632 0.611 - - - 

45 0.448 0.528 0.447 0.390 0.411 0.422 0.412 
b 90 0.224 0.295 0.224 0.180 0.194 0.204 0.195 

135 0.158 0.080 0.246 0.416 0.353 0.310 0.350 

45 0.626 0.685 0.704 0.711 0.714 0.719 0.72 I 
c 90 0.555 0.602 0.622 0.629 0.632 0.637 0.640 

135 0.520 0.542 0.555 0.559 0.561 0.565 0.567 
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problem a (one punch on a half-space) and the column ~t = 90 ° for problem b (two punches on a half-space) enables 
the degree of mutual influence of the two wedge-shaped punches on the half-plane to be estimated: weaker 
singularities arise here than for a single punch. 

Note that in the case of two wedge-shaped punches with a plane base on a half-space, an accurate solution of 
the contact problem was obtained by Rvachev [7, p. 206]. However, Rvachev's solution does not contain the 
singularities obtained as above as p ~ 0. The reason for this deficiency of the solution is the fact that the deformation 
energy (the integral over the contact area of the product of the contact-pressure functions and the normal 
displacement) becomes infinite. These solutions are eliminated here since a Mellin transformation with respect 
to p cannot be applied to the function f(p, V) = const (a punch with a flat base), and conditions (1) also break 
down. 

Although the numerical method described above is not very effective when 13 ~ 0, its results for real roots are 
close to those obtained in [2] by the asymptotic method. For values of 13 that are not too small, the existence of a 
root in the range s e (-3/2; -1/2) of the real axis is ensured by the fact that when s = -3/2 and s = -1/2 the function 
D(s) has multiple poles, since they are single for each element (12) like the poles of the gamma functions that 
occur in the function Gn(s) (10); when s ~ (-3/2; -1/2), D(s) has different signs in the region of these poles (this 
can be verified numerically). 

On the other hand, in the case of an elastic half-space, as here for a wedge of arbitrary apex angle, a pure imaginary 
root of the equation D(s) = 0 was obtained in [1] using the Bubnov-Galerkin method, leading to the singularity 
)' = 3/2 + i0*, found for a half-space [3] and for a wedge [2]. This can obviously be explained as follows. Since the 
value of 0° is usually fairly large'J2], while the elements of the matrix (12) decrease strongly as lms ~ oo, to calculate 
the determinant D(s) one must increase the order of the reduced matrix and, in fact, find the limit of the sum of 
an infinitely large number of terms of infinitely small quantities, for which the numerical-analytic method [1] is 
quite unsuccessful. Nevertheless, it can be asserted that the singularity ~' = 3/2 + i0* in the case, for example, of 
an elastic half-space, as follows from formulae (1.13) in [3], is present at least up to the value ~. = 2 (the angle of 
the punch is 57.3°), when, up to terms O(~.-61n3~.),0 * = 4.72; when ~. ~ 1, 0* ~ 2.28; when ~. is reduced further, 
when the asymptotic method [3] ceases to work, we can assume that either 0* ~ ~ when 213 ~ z, or the root which 
leads to this oscillating singularity, on meeting the other root, departs from the pole considered. 
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